Practical Data Science with Amazon SageMaker (PDSASM)

Durée totale

Practical Data Science with Amazon SageMaker (PDSASM)

Fast Lane
Logo Fast Lane
Note du fournisseur: starstarstarstarstar_border 8 Fast Lane a une moyenne de 8 (basée sur 2 avis)

Astuce: besoin de plus d'informations sur la formation? Téléchargez la brochure!

Dates et lieux de début

Il n'y a pas de dates de débuts connues pour ce produit.

Description

Course Content

In this intermediate-level course, individuals learn how to solve a real-world use case with Machine Learning (ML) and produce actionable results using Amazon SageMaker. This course walks through the stages of a typical data science process for Machine Learning from analyzing and visualizing a dataset to preparing the data, and feature engineering. Individuals will also learn practical aspects of model building, training, tuning, and deployment with Amazon SageMaker. Real life use cases include customer retention analysis to inform customer loyalty programs.

Prerequisites

  • Familiarity with Python programming language
  • Basic understanding of Machine Learning

Who Should Atte…

Lisez la description complète ici

Foire aux questions (FAQ)

Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

Vous n'avez pas trouvé ce que vous cherchiez ? Voir aussi : Data Science, Data privacy, Data management, Big data et Python.

Course Content

In this intermediate-level course, individuals learn how to solve a real-world use case with Machine Learning (ML) and produce actionable results using Amazon SageMaker. This course walks through the stages of a typical data science process for Machine Learning from analyzing and visualizing a dataset to preparing the data, and feature engineering. Individuals will also learn practical aspects of model building, training, tuning, and deployment with Amazon SageMaker. Real life use cases include customer retention analysis to inform customer loyalty programs.

Prerequisites

  • Familiarity with Python programming language
  • Basic understanding of Machine Learning

Who Should Attend

  • Developers
  • Data Scientists

Gedetailleerde cursusinhoud

Module 1: Introduction to Machine Learning

  • Types of ML
  • Job Roles in ML
  • Steps in the ML pipeline

Module 2: Introduction to Data Prep and SageMaker

  • Training and Test dataset defined
  • Introduction to SageMaker
  • Demo: SageMaker console
  • Demo: Launching a Jupyter notebook

Module 3: Problem formulation and Dataset Preparation

  • Business Challenge: Customer churn
  • Review Customer churn dataset

Module 4: Data Analysis and Visualization

  • Demo: Loading and Visualizing your dataset
  • Exercise 1: Relating features to target variables
  • Exercise 2: Relationships between attributes
  • Demo: Cleaning the data

Module 5: Training and Evaluating a Model

  • Types of Algorithms
  • XGBoost and SageMaker
  • Demo 5: Training the data
  • Exercise 3: Finishing the Estimator definition
  • Exercise 4: Setting hyperparameters
  • Exercise 5: Deploying the model
  • Demo: Hyperparameter tuning with SageMaker
  • Demo: Evaluating Model Performance

Module 6: Automatically Tune a Model

  • Automatic hyperparameter tuning with SageMaker
  • Exercises 6-9: Tuning Jobs

Module 7: Deployment / Production Readiness

  • Deploying a model to an endpoint
  • A/B deployment for testing
  • Auto Scaling Scaling
  • Demo: Configure and Test Autoscaling
  • Demo: Check Hyperparameter tuning job
  • Demo: AWS Autoscaling
  • Exercise 10-11: Set up AWS Autoscaling

Module 8: Relative Cost of Errors

  • Cost of various error types
  • Demo: Binary Classification cutoff

Module 9: Amazon SageMaker Architecture and features

  • Accessing Amazon SageMaker notebooks in a VPC
  • Amazon SageMaker batch transforms
  • Amazon SageMaker Ground Truth
  • Amazon SageMaker Neo

Rester à jour sur les nouveaux avi

Pas encore d'avis.

Partagez vos avis

Avez-vous participé à cours? Partagez votre expérience et aider d'autres personnes à faire le bon choix. Pour vous remercier, nous donnerons 1,00 € à la fondation Stichting Edukans.

Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

Recevoir une brochure d'information (gratuit)

(optionnel)
(optionnel)
(optionnel)
(optionnel)
(optionnel)

Vous avez des questions?

(optionnel)
Nous conservons vos données personnelles dans le but de vous accompagner par email ou téléphone.
Vous pouvez trouver plus d'informations sur : Politique de confidentialité.