Build machine learning solutions using Azure Databricks (DP-3014) [M-DP3014]
computer En ligne: VIRTUAL TRAINING CENTER 4 fév. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 4 mar. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 4 mar. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 15 avr. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 20 mai 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 3 juin 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 2 juil. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 2 juil. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 12 août 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 23 sept. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 8 oct. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 18 nov. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 18 nov. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 3 déc. 2026 |
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
OBJECTIVES
Students will learn to,
- Explore Azure Databricks
- Use Apache Spark in Azure Databricks
- Train a machine learning model in Azure Databricks
- Use MLflow in Azure Databricks
- Tune hyperparameters in Azure Databricks
- Use AutoML in Azure Databricks
- Train deep learning models in Azure Databricks
- Manage machine learning in production with Azure Databricks
AUDIENCE
…
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
OBJECTIVES
Students will learn to,
- Explore Azure Databricks
- Use Apache Spark in Azure Databricks
- Train a machine learning model in Azure Databricks
- Use MLflow in Azure Databricks
- Tune hyperparameters in Azure Databricks
- Use AutoML in Azure Databricks
- Train deep learning models in Azure Databricks
- Manage machine learning in production with Azure Databricks
AUDIENCE
Data scientists and machine learning engineers.
CONTENT
Module 1 : Explore Azure Databricks
- Provision an Azure Databricks workspace.
- Identify core workloads and personas for Azure Databricks.
- Use Data Governance tools Unity Catalog and Microsoft Purview
- Describe key concepts of an Azure Databricks solution.
Module 2 : Use Apache Spark in Azure Databricks
- Describe key elements of the Apache Spark architecture.
- Create and configure a Spark cluster.
- Describe use cases for Spark.
- Use Spark to process and analyze data stored in files.
- Use Spark to visualize data.
Module 3 : Train a machine learning model in Azure Databricks
- Prepare data for machine learning
- Train a machine learning model
- Evaluate a machine learning model
Module 4 : Use MLflow in Azure Databricks
- Use MLflow to log parameters, metrics, and other details from experiment runs.
- Use MLflow to manage and deploy trained models.
Module 5 : Tune hyperparameters in Azure Databricks
- Use the Hyperopt library to optimize hyperparameters.
- Distribute hyperparameter tuning across multiple worker nodes.
Module 6 : Use AutoML in Azure Databricks
- Use the AutoML user interface in Azure Databricks
- Use the AutoML API in Azure Databricks
Module 7 : Train deep learning models in Azure Databricks
- Train a deep learning model in Azure Databricks
- Distribute deep learning training by using the Horovod library
Module 8 : Manage machine learning in production with Azure Databricks
- Automate feature engineering and data pipelines
- Model development and training
- Model deployment strategies
- Model versioning and lifecycle management
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

