Amazon SageMaker Studio for Data Scientists [GK110001]
place2-Brussel Center (Koloniënstraat 11) 4 fév. 2026 jusqu'au 6 fév. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 4 fév. 2026 jusqu'au 6 fév. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 9 mar. 2026 jusqu'au 11 mar. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 13 avr. 2026 jusqu'au 15 avr. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 6 mai 2026 jusqu'au 8 mai 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 15 juin 2026 jusqu'au 17 juin 2026 |
place2-Brussel Center (Koloniënstraat 11) 22 juil. 2026 jusqu'au 24 juil. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 22 juil. 2026 jusqu'au 24 juil. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 7 sept. 2026 jusqu'au 9 sept. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 14 sept. 2026 jusqu'au 16 sept. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 7 oct. 2026 jusqu'au 9 oct. 2026 |
place4-Zoom Virtual Centre 9 déc. 2026 jusqu'au 11 déc. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 21 déc. 2026 jusqu'au 23 déc. 2026 |
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models quickly. It does this by bringing together a broad set of capabilities purpose-built for ML. This course prepares experienced data scientists to use the tools that are a part of SageMaker Studio, including Amazon CodeWhisperer and Amazon CodeGuru Security scan extensions, to improve productivity at every step of the ML lifecycle.
Course level: Advanced
Duration: 3 days
Activities
This course includes presentations, hands-on labs, demonstrations, discussions, and a capstone project.
OBJECTIVES
In this course, you will learn to:
- Accelerate the process to prepare, bu…
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models quickly. It does this by bringing together a broad set of capabilities purpose-built for ML. This course prepares experienced data scientists to use the tools that are a part of SageMaker Studio, including Amazon CodeWhisperer and Amazon CodeGuru Security scan extensions, to improve productivity at every step of the ML lifecycle.
Course level: Advanced
Duration: 3 days
Activities
This course includes presentations, hands-on labs,
demonstrations, discussions, and a capstone project.
OBJECTIVES
In this course, you will learn to:
- Accelerate the process to prepare, build, train, deploy, and monitor ML solutions using Amazon SageMaker Studio
AUDIENCE
Experienced data scientists who are proficient in ML and deep learning fundamentals
CONTENT
Day 1
Module 1: Amazon SageMaker Studio Setup
- JupyterLab Extensions in SageMaker Studio
- Demonstration: SageMaker user interface demo
Module 2: Data Processing
- Using SageMaker Data Wrangler for data processing
- Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
- Using Amazon EMR
- Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
- Using AWS Glue interactive sessions
- Using SageMaker Processing with custom scripts
- Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
- SageMaker Feature Store
- Hands-On Lab: Feature engineering using SageMaker Feature Store
Module 3: Model Development
- SageMaker training jobs
- Built-in algorithms
- Bring your own script
- Bring your own container
- SageMaker Experiments
- Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning
- Models
Day 2
Module 3: Model Development (continued)
- SageMaker Debugger
- Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
- Automatic model tuning
- SageMaker Autopilot: Automated ML
- Demonstration: SageMaker Autopilot
- Bias detection
- Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
- SageMaker Jumpstart
Module 4: Deployment and Inference
- SageMaker Model Registry
- SageMaker Pipelines
- Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
- SageMaker model inference options
- Scaling
- Testing strategies, performance, and optimization
- Hands-On Lab: Inferencing with SageMaker Studio
Module 5: Monitoring
- Amazon SageMaker Model Monitor
- Discussion: Case study
- Demonstration: Model Monitoring
Day 3
Module 6: Managing SageMaker Studio Resources and Updates
- Accrued cost and shutting down
- Updates Capstone
- Environment setup
- Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
- Challenge 2: Create feature groups in SageMaker Feature Store
- Challenge 3: Perform and manage model training and tuning using SageMaker Experiments
- (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
- Challenge 5: Evaluate the model for bias using SageMaker Clarify
- Challenge 6: Perform batch predictions using model endpoint
- (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

