Practical Data Science with Amazon SageMaker [GK0630]
Dates et lieux de début
computer En ligne: VIRTUAL TRAINING CENTER 23 juin 2023 |
computer En ligne: VIRTUAL TRAINING CENTER 15 sept. 2023 |
computer En ligne: VIRTUAL TRAINING CENTER 15 déc. 2023 |
Description
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
OBJECTIVES
In this course, you will learn how to:
- Prepare a dataset for training
- Train and evaluate a Machine Learning model
- …
Foire aux questions (FAQ)
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
OBJECTIVES
In this course, you will learn how to:
- Prepare a dataset for training
- Train and evaluate a Machine Learning model
- Automatically tune a Machine Learning model
- Prepare a Machine Learning model for production
- Think critically about Machine Learning model results
AUDIENCE
This course is intended for:
- Developers
- Data Scientists
CONTENT
Day One
Module 1: Introduction to Machine Learning
- Types of ML
- Job Roles in ML
- Steps in the ML pipeline
Module 2: Introduction to Data Prep and SageMaker
- Training and Test dataset defined
- Introduction to SageMaker
- Demo: SageMaker console
- Demo: Launching a Jupyter notebook
Module 3: Problem formulation and Dataset Preparation
- Business Challenge: Customer churn
- Review Customer churn dataset
Module 4: Data Analysis and Visualization
- Demo: Loading and Visualizing your dataset
- Exercise 1: Relating features to target variables
- Exercise 2: Relationships between attributes
- Demo: Cleaning the data
Module 5: Training and Evaluating a Model
- Types of Algorithms
- XGBoost and SageMaker
- Demo 5: Training the data
- Exercise 3: Finishing the Estimator definition
- Exercise 4: Setting hyperparameters
- Exercise 5: Deploying the model
- Demo: Hyperparameter tuning with SageMaker
- Demo: Evaluating Model Performance
Module 6: Automatically Tune a Model
- Automatic hyperparameter tuning with SageMaker
- Exercises 6-9: Tuning Jobs
Module 7: Deployment / Production Readiness
- Deploying a model to an endpoint
- A/B deployment for testing
- Auto Scaling Scaling
- Demo: Configure and Test Autoscaling
- Demo: Check Hyperparameter tuning job
- Demo: AWS Autoscaling
- Exercise 10-11: Set up AWS Autoscaling
- Cost of various error types
- Demo: Binary Classification cutoff
Module 9: Amazon SageMaker Architecture and features
- Accessing Amazon SageMaker notebooks in a VPC
- Amazon SageMaker batch transforms
- Amazon SageMaker Ground Truth
- Amazon SageMaker Neo
Rester à jour sur les nouveaux avi
Partagez vos avis
Avez-vous participé à cours? Partagez votre expérience et aider d'autres personnes à faire le bon choix. Pour vous remercier, nous donnerons 1,00 € à la fondation Stichting Edukans.Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.