Implement Generative AI engineering with Azure Databricks (DP-3028) [M-DP3028]
computer En ligne: VIRTUAL TRAINING CENTER 20 fév. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 20 mar. 2026 |
place2-Brussel Center (Koloniënstraat 11) 10 avr. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 10 avr. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 29 mai 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 12 juin 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 17 juil. 2026 |
place2-Brussel Center (Koloniënstraat 11) 28 août 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 28 août 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 21 sept. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 16 oct. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 20 nov. 2026 |
place2-Brussel Center (Koloniënstraat 11) 21 déc. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 21 déc. 2026 |
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
This course covers generative AI engineering on Azure Databricks, using Spark to explore, fine-tune, evaluate, and integrate advanced language models.
It teaches how to implement techniques like retrieval-augmented generation (RAG) and multi-stage reasoning, as well as how to fine-tune large language models for specific tasks and evaluate their performance. Students will also learn about responsible AI practices for deploying AI solutions and how to manage models in production using LLMOps (Large Language Model Operations) on Azure Databricks.
AUDIENCE
This course is designed for data scientists, machine learning engineers, and other AI practitioners who want to build generative AI …Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
This course covers generative AI engineering on Azure Databricks, using Spark to explore, fine-tune, evaluate, and integrate advanced language models.
It teaches how to implement techniques like retrieval-augmented generation (RAG) and multi-stage reasoning, as well as how to fine-tune large language models for specific tasks and evaluate their performance. Students will also learn about responsible AI practices for deploying AI solutions and how to manage models in production using LLMOps (Large Language Model Operations) on Azure Databricks.
AUDIENCE
This course is designed for data scientists, machine learning engineers, and other AI practitioners who want to build generative AI applications using Azure Databricks. It is intended for professionals familiar with fundamental AI concepts and the Azure Databricks platform.CONTENT
- Implement Generative AI engineering with Azure Databricks
- Get started with language models in Azure Databricks
- Implement Retrieval Augmented Generation (RAG) with Azure Databricks
- Implement multi-stage reasoning in Azure Databricks
- Fine-tune language models with Azure Databricks
- Evaluate language models with Azure Databricks
- Review responsible AI principles for language models in Azure Databricks
- Implement LLMOps in Azure Databricks
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

