Developing Generative AI Applications on AWS (DGAIA)

Durée totale

Developing Generative AI Applications on AWS (DGAIA)

Fast Lane
Logo Fast Lane
Note du fournisseur: starstarstarstarstar_border 8 Fast Lane a une moyenne de 8 (basée sur 2 avis)

Astuce: besoin de plus d'informations sur la formation? Téléchargez la brochure!

Dates et lieux de début
Il n'y a pas de dates de débuts connues pour ce produit.

Description

Prerequisites

We recommend that attendees of this course have:

  • Completed AWS Technical Essentials (AWSE)
  • Intermediate-level proficiency in Python

Who Should Attend

This course is intended for:

  • Software developers interested in using LLMs without fine-tuning

Gedetailleerde cursusinhoud

Day 1

Module 1: Introduction to Generative AI – Art of the Possible

  • Overview of ML
  • Basics of generative AI
  • Generative AI use cases
  • Generative AI in practice
  • Risks and benefits

Module 2: Planning a Generative AI Project

  • Generative AI fundamentals
  • Generative AI in practice
  • Generative AI context
  • Steps in planning a generative AI project
  • Risks and mitigation

Module 3: Getting Started with Amazon Bedroc…

Lisez la description complète ici

Foire aux questions (FAQ)

Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

Vous n'avez pas trouvé ce que vous cherchiez ? Voir aussi : Amazon Web Services (AWS), Intelligence Artificielle, Microsoft Exchange Server, Administration des serveurs et Apache.

Prerequisites

We recommend that attendees of this course have:

  • Completed AWS Technical Essentials (AWSE)
  • Intermediate-level proficiency in Python

Who Should Attend

This course is intended for:

  • Software developers interested in using LLMs without fine-tuning

Gedetailleerde cursusinhoud

Day 1

Module 1: Introduction to Generative AI – Art of the Possible

  • Overview of ML
  • Basics of generative AI
  • Generative AI use cases
  • Generative AI in practice
  • Risks and benefits

Module 2: Planning a Generative AI Project

  • Generative AI fundamentals
  • Generative AI in practice
  • Generative AI context
  • Steps in planning a generative AI project
  • Risks and mitigation

Module 3: Getting Started with Amazon Bedrock

  • Introduction to Amazon Bedrock
  • Architecture and use cases
  • How to use Amazon Bedrock
  • Demonstration: Setting up Bedrock access and using playgrounds

Module 4: Foundations of Prompt Engineering

  • Basics of foundation models
  • Fundamentals of prompt engineering
  • Basic prompt techniques
  • Advanced prompt techniques
  • Model-specific prompt techniques
  • Demonstration: Fine-tuning a basic text prompt
  • Addressing prompt misuses
  • Mitigating bias
  • Demonstration: Image bias mitigation

Day 2

Module 5: Amazon Bedrock Application Components

  • Overview of generative AI application components
  • Foundation models and the FM interface
  • Working with datasets and embeddings
  • Demonstration: Word embeddings
  • Additional application components
  • Retrieval Augmented Generation (RAG)
  • Model fine-tuning
  • Securing generative AI applications
  • Generative AI application architecture

Module 6: Amazon Bedrock Foundation Models

  • Introduction to Amazon Bedrock foundation models
  • Using Amazon Bedrock FMs for inference
  • Amazon Bedrock methods
  • Data protection and auditability
  • Lab: Invoke Bedrock model for text generation using zero-shot prompt

Module 7: LangChain

  • Optimizing LLM performance
  • Integrating AWS and LangChain
  • Using models with LangChain
  • Constructing prompts
  • Structuring documents with indexes
  • Storing and retrieving data with memory
  • Using chains to sequence components
  • Managing external resources with LangChain agents

Module 8: Architecture Patterns

  • Introduction to architecture patterns
  • Text summarization
  • Lab: Using Amazon Titan Text Premier to summarize text of small files
  • Lab: Summarize long texts with Amazon Titan
  • Question answering
  • Lab: Using Amazon Bedrock for question answering
  • Chatbot
  • Lab: Build a chatbot
  • Code generation
  • Lab: Using Amazon Bedrock models for code generation
  • LangChain and agents for Amazon Bedrock
  • Lab: Building conversational applications with the Converse API

Fast Lane werkt met Nederlandse trainers die didactische vaardigheden combineren met veel practische ervaring.

Rester à jour sur les nouveaux avi
Pas encore d'avis.
Partagez vos avis
Avez-vous participé à cours? Partagez votre expérience et aider d'autres personnes à faire le bon choix. Pour vous remercier, nous donnerons 1,00 € à la fondation Stichting Edukans.

Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

Où devons-nous envoyer l'information ?

(optionnel)
(optionnel)
(optionnel)
(optionnel)
(optionnel)
Nous conservons vos données personnelles et les partageons avec Fast Lane dans le but de vous accompagner par email ou téléphone. Vous pouvez trouver plus d'informations sur : Politique de confidentialité.