Exam Prep: AWS Certified AI Pracitioner [GK910029A]
computer En ligne: VIRTUAL TRAINING CENTER 6 fév. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 19 mar. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 19 mar. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 10 avr. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 12 juin 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 17 juil. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 17 juil. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 14 août 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 18 sept. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 16 oct. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 13 nov. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 13 nov. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 18 déc. 2026 |
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
AWS Certified AI Practitioner (AIF-C01) is a one-day ILT where you learn how to assess your preparedness for the AWS Certified AI Practitioner (AIF-C01) exam. The AWS Certified AI Practitioner (AIF-C01) exam validates in-demand knowledge of AI, machine learning (ML), and generative AI concepts and use cases.
This intermediate-level course prepares you for the AWS Certified AI Practitioner (AIF-C01) exam by providing a comprehensive exploration of the exam topics. You'll delve into the key areas covered on the exam, understanding how they relate to developing AI and machine learning solutions on the AWS platform. Through detailed explanations and walkthroughs of exam-style questions,…
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
AWS Certified AI Practitioner (AIF-C01) is a one-day ILT where you learn how to assess your preparedness for the AWS Certified AI Practitioner (AIF-C01) exam. The AWS Certified AI Practitioner (AIF-C01) exam validates in-demand knowledge of AI, machine learning (ML), and generative AI concepts and use cases.
This intermediate-level course prepares you for the AWS Certified AI Practitioner (AIF-C01) exam by providing a comprehensive exploration of the exam topics. You'll delve into the key areas covered on the exam, understanding how they relate to developing AI and machine learning solutions on the AWS platform. Through detailed explanations and walkthroughs of exam-style questions, you'll reinforce your knowledge, identify gaps in your understanding, and gain valuable strategies for tackling questions effectively. The course includes review of exam-style sample questions, to help you recognize incorrect responses and hone your test-taking abilities. By the end, you'll have a firm grasp on the concepts and practical applications tested on the AWS Certified AI Practitioner certification exam.
OBJECTIVES
In this course, you will learn to:
- Identify the scope and content tested by the AWS Certified AI Practitioner (AIF-C01) exam.
- Practice exam style questions and evaluate your preparation strategy.
- Examine use cases and differentiate between them.
AUDIENCE
This course is intended for individuals who are preparing for the AWS Certified AI Practitioner (AIF-C01) exam.CONTENT
Module 1: Fundamentals of AI and ML
- 1.1: Explain basic AI concepts and terminologies
- 1.2: Identify practical use cases for AI
- 1.3: Describe the ML development lifecycle
Module 2:Fundamentals of Generative AI
- 2.1: Explain the basic concepts of generative AI
- 2.2: Understand the capabilities and limitations of generative AI for solving business problems
- 2.3: Describe AWS infrastructure and technologies for building generative AI applications
Module 3: Applications of Foundation Models
- 3.1: Describe design considerations for applications that use foundation models
- 3.2: Choose effective prompt engineering techniques
- 3.3: Describe the training and fine-tuning process for foundation models
- 3.4: Describe methods to evaluate foundation model performance
Module 4: Guidelines for Responsible AI
- 4.1: Explain the development of AI systems that are responsible
- 4.2: Recognize the importance of transparent and explainable models
Module 5: Security, Compliance, and Governance for AI Solutions
- 5.1: Explain methods to secure AI systems
- 5.2: Recognize governance and compliance regulations for AI systems
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

