Big Data Scientist [BDS]

Durée totale
Localisation
A cet endroit, En ligne
Date et lieu de début

Big Data Scientist [BDS]

Global Knowledge Belgium BV
Logo Global Knowledge Belgium BV
Note du fournisseur: starstarstar_halfstar_borderstar_border 4,5 Global Knowledge Belgium BV a une moyenne de 4,5 (basée sur 2 avis)

Astuce: besoin de plus d'informations sur la formation? Téléchargez la brochure!

Dates et lieux de début
computer En ligne: VIRTUAL TRAINING CENTER
23 fév. 2026 jusqu'au 26 fév. 2026
computer En ligne: VIRTUAL TRAINING CENTER
2 mar. 2026 jusqu'au 5 mar. 2026
place1-Mechelen (Battelsesteenweg 455-B)
14 avr. 2026 jusqu'au 17 avr. 2026
computer En ligne: VIRTUAL TRAINING CENTRE
14 avr. 2026 jusqu'au 17 avr. 2026
computer En ligne: VIRTUAL TRAINING CENTER
20 juil. 2026 jusqu'au 23 juil. 2026
computer En ligne: VIRTUAL TRAINING CENTER
24 août 2026 jusqu'au 27 août 2026
computer En ligne: VIRTUAL TRAINING CENTER
15 sept. 2026 jusqu'au 18 sept. 2026
place1-Mechelen (Battelsesteenweg 455-B)
12 oct. 2026 jusqu'au 15 oct. 2026
computer En ligne: VIRTUAL TRAINING CENTRE
12 oct. 2026 jusqu'au 15 oct. 2026
Description

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

This 4-day Big Data Scientist course is a continuation of the Big Data Fundamentals (BDF) course and consists of 4 modules. After each module the participant can take the corresponding exam. If all exams are passed, the participant will be Certified Big Data Scientist. The course is scheduled in 4 blocks of 1 day, spread over approximately 4 weeks.

The modules are part of the Big Data Science Certified Professional (BDSCP) curriculum of Arcitura Education. The Big Data Science Certified Professional (BDSCP) program from Arcitura is dedicated to excellence in the fields of Big Data science, analysis, analytics, business intelligence, and technology architecture, as well as design, de…

Lisez la description complète ici

Foire aux questions (FAQ)

Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

Vous n'avez pas trouvé ce que vous cherchiez ? Voir aussi : Big data, Data privacy, Business plan, Data management et Data Science.

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

This 4-day Big Data Scientist course is a continuation of the Big Data Fundamentals (BDF) course and consists of 4 modules. After each module the participant can take the corresponding exam. If all exams are passed, the participant will be Certified Big Data Scientist. The course is scheduled in 4 blocks of 1 day, spread over approximately 4 weeks.

The modules are part of the Big Data Science Certified Professional (BDSCP) curriculum of Arcitura Education. The Big Data Science Certified Professional (BDSCP) program from Arcitura is dedicated to excellence in the fields of Big Data science, analysis, analytics, business intelligence, and technology architecture, as well as design, development, and governance.

AUDIENCE

This course is intended for anyone who, after following the Big Data Fundamentals course, has come to the conclusion that he or she wishes or needs to gain more insight into the field of Big Data.

In this course, the emphasis is more on broadening than deepening knowledge; the participants are not trained as specialists but as generalists. Gaining an overview is important, because anyone who lacks one cannot successfully become part of a Big Data team.

CERTIFICATION

This course consists of 4 modules. Each module can be concluded with an exam. The exams are optional and are not included in the price.

If you want to take the 4 exams, you need to indicate this in advance.

It concerns the following 4 exams (via Pearson Vue) of Arcitura Education:

  • B90.02, Big Data Analysis & Technology Concepts
  • B90.04, Fundamentals Big Data Analysis & Science
  • B90.05, Advanced Big Data Analysis & Science
  • B90.06, Big Data Analysis & Science Lab

 

 

 

CONTENT

Module 1: Big Data Analysis & Technology Concepts         

  • Big Data Analysis Lifecycle (from business case evaluation to data analysis and visualization)
  • A/B Testing, Correlation
  • Regression, Heat Maps
  • Time Series Analysis
  • Network Analysis
  • Spatial Data Analysis
  • Classification, Clustering
  • Outlier Detection
  • Filtering (including collaborative filtering & content-based filtering)
  • Natural Language Processing
  • Sentiment Analysis, Text Analytics
  • File Systems & Distributed File Systems, NoSQL
  • Distributed & Parallel Data Processing,
  • Processing Workloads, Clusters
  • Cloud Computing & Big Data
  • Foundational Big Data Technology Mechanisms


Module 2: Fundamentals Big Data Analysis & Science       

  • Data Science, Data Mining & Data Modeling
  • Big Data Dataset Categories
  • Exploratory Data Analysis (EDA) (including numerical summaries, rules & data reduction)
  • EDA analysis types (including univariate, bivariate & multivariate)
  • Essential Statistics (including variable categories & relevant mathematics)
  • Statistics Analysis (including descriptive, inferential, correlation, covariance & hypothesis testing)
  • Data Munging & Machine Learning
  • Variables & Basic Mathematical Notations
  • Statistical Measures & Statistical Inference
  • Distributions & Data Processing Techniques
  • Data Discretization, Binning, Clustering
  • Visualization Techniques & Numerical Summaries
  • Correlation for Big Data
  • Time Series Analysis for Big Data

Module 3: Advanced Big Data Analysis & Science    

  • Statistical Models, Model Evaluation Measures (including cross-validation, bias-variance, confusion matrix & f-score)
  • Machine Learning Algorithms, Pattern Identification (including association rules & apriori algorithm)
  • Advanced Statistical Techniques (including parametric vs. non-parametric, clustering vs. non-clustering distance-based, supervised vs. semi-supervised)
  • Linear Regression & Logistic Regression for Big Data
  • Decision Trees for Big Data
  • Classification Rules for Big Data
  • K Nearest Neighbor (kNN) for Big Data
  • Naïve Bayes for Big Data
  • Association Rules for Big Data
  • K-means for Big Data
  • Text Analytics for Big Data
  • Outlier Detection for Big Data

Module 4: Big Data Analysis & Science lab

This course module covers a series of exercises and problems designed to test the participant's ability to apply knowledge of topics covered previously in course modules 4 and 5. Completing this lab will help highlight areas that require further attention, and will further prove hands-on proficiency in Big Data analysis and science practices as they are applied and combined to solve real-world problems.

As a hands-on lab, this course incorporates a set of detailed exercises that require participants to solve various inter-related problems, with the goal of fostering a comprehensive understanding of how different data analysis techniques can be applied to solve problems in Big Data environments and used to make significant, relevant predictions that offer increased business value.

 

Rester à jour sur les nouveaux avi
Pas encore d'avis.
  • Demander des informations à propos de cours. Dorénavant, nous recevrez aussi une notification lorsque qu'un autre utilisateur partage son avis. C'est un bon moyen de vous encourager à continuer d'apprendre!
  • Voir les produits similaires avec des avis: Big data.
Partagez vos avis
Avez-vous participé à cours? Partagez votre expérience et aider d'autres personnes à faire le bon choix. Pour vous remercier, nous donnerons 1,00 € à la fondation Stichting Edukans.

Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

Recevoir une brochure d'information (gratuit)

(optionnel)
(optionnel)
(optionnel)
(optionnel)
(optionnel)
(optionnel)

Vous avez des questions?

(optionnel)
Nous conservons vos données personnelles dans le but de vous accompagner par email ou téléphone.
Vous pouvez trouver plus d'informations sur : Politique de confidentialité.