Implement a Data Analytics Solution with Azure Databricks (DP-3011) [M-DP3011]
computer En ligne: VIRTUAL TRAINING CENTER 2 fév. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 2 mar. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 2 mar. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 13 avr. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 18 mai 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 1 juin 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 30 juin 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 30 juin 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 10 août 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 21 sept. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 6 oct. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 16 nov. 2026 |
computer En ligne: VIRTUAL TRAINING CENTRE 16 nov. 2026 |
computer En ligne: VIRTUAL TRAINING CENTER 1 déc. 2026 |
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
Implement a Data Analytics Solution with Azure Databricks
This course explores how to use Databricks and Apache Spark on Azure to take data projects from exploration to production. You’ll learn how to ingest, transform, and analyze large-scale datasets with Spark DataFrames, Spark SQL, and PySpark, while also building confidence in managing distributed data processing. Along the way, you’ll get hands-on with the Databricks workspace—navigating clusters and creating and optimizing Delta tables. You’ll also dive into data engineering practices, including designing ETL pipelines, handling schema evolution, and enforcing data quality. The course then moves into orchestration, showing …
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
Implement a Data Analytics Solution with Azure Databricks
This course explores how to use Databricks and Apache Spark on Azure to take data projects from exploration to production. You’ll learn how to ingest, transform, and analyze large-scale datasets with Spark DataFrames, Spark SQL, and PySpark, while also building confidence in managing distributed data processing. Along the way, you’ll get hands-on with the Databricks workspace—navigating clusters and creating and optimizing Delta tables. You’ll also dive into data engineering practices, including designing ETL pipelines, handling schema evolution, and enforcing data quality. The course then moves into orchestration, showing you how to automate and manage workloads with Lakeflow Jobs and pipelines. To round things out, you’ll explore governance and security capabilities such as Unity Catalog and Purview integration, ensuring you can work with data in a secure, well-managed, and production-ready environment.
OBJECTIVES
Students will learn to,
- Explore Azure Databricks
- Perform data analysis with Azure Databricks
- Use Apache Spark in Azure Databricks
- Manage data with Delta Lake
- Build data pipelines with Delta Live Tables
- Deploy workloads with Azure Databricks Workflows
- Use SQL Warehouses in Azure Databricks
- Run Azure Databricks Notebooks with Azure Data Factory
CONTENT
Module 1: Implement a Data Analytics Solution with Azure Databricks
- Explore Azure Databricks
- Perform data analysis with Azure Databricks
- Use Apache Spark in Azure Databricks
- Manage data with Delta Lake
- Build Lakeflow Declarative Pipelines
- Deploy workloads with Lakeflow Jobs
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

