Data science without a Ph.D. Using IBM SPSS Modeler (v18.1.1) [0A018G]
Dates et lieux de début
computer En ligne: VIRTUAL TRAINING CENTER 24 avr. 2023 |
computer En ligne: VIRTUAL TRAINING CENTER 18 sept. 2023 |
Description
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
This course focuses on reviewing concepts of data science, where participants will learn the stages of a data science project. Topics include using automated tools to prepare data for analysis, build models, evaluate models, and deploy models. To learn about these data science concepts and topics, participants will use IBM SPSS Modeler as a tool.
OBJECTIVES
Please refer to course overview
AUDIENCE
• Business Analysts • Data Scientists • Participants who want to get started with data science
CONTENT
1: Introduction to data science and IBM SPSS Modeler • Explain the stages in a data-science project, using the CRISP-DM methodology • Create IBM SPSS Modeler streams • Bui…
Foire aux questions (FAQ)
Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
This course focuses on reviewing concepts of data science, where participants will learn the stages of a data science project. Topics include using automated tools to prepare data for analysis, build models, evaluate models, and deploy models. To learn about these data science concepts and topics, participants will use IBM SPSS Modeler as a tool.
OBJECTIVES
Please refer to course overview
AUDIENCE
• Business Analysts • Data Scientists • Participants who want to get started with data science
CONTENT
1: Introduction to data science and IBM SPSS Modeler • Explain the stages in a data-science project, using the CRISP-DM methodology • Create IBM SPSS Modeler streams • Build and apply a machine learning model 2: Setting measurement levels • Explain the concept of "field measurement level" • Explain the consequences of incorrect measurement levels • Modify a field's measurement level 3: Exploring the data • Audit the data • Check for invalid values • Take action for invalid values • Impute missing values • Replace outliers and extremes 4: Using automated data preparation • Automatically exclude low quality fields • Automatically replace missing values • Automatically replace outliers and extremes 5: Partitioning the data • Explain the rationale for partitioning the data • Partition the data into a training set and testing set 6: Selecting predictors • Automatically select important predictors (features) to predict a target • Explain the limitations of automatically selecting features 7: Using automated modeling • Find the best model for categorical targets • Find the best model for continuous targets • Explain what an ensemble model is 8: Evaluating models • Evaluate models for categorical targets • Evaluate models for continuous targets 9: Deploying models • List two ways to deploy models • Export scored data
Rester à jour sur les nouveaux avi
Partagez vos avis
Avez-vous participé à cours? Partagez votre expérience et aider d'autres personnes à faire le bon choix. Pour vous remercier, nous donnerons 1,00 € à la fondation Stichting Edukans.Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.