Data Analysis Deep Dive [GK821567]

Durée totale
Localisation
En ligne
Date et lieu de début

Data Analysis Deep Dive [GK821567]

Global Knowledge Belgium BV
Logo Global Knowledge Belgium BV
Note du fournisseur: starstarstar_halfstar_borderstar_border 4,5 Global Knowledge Belgium BV a une moyenne de 4,5 (basée sur 2 avis)

Astuce: besoin de plus d'informations sur la formation? Téléchargez la brochure!

Dates et lieux de début

computer En ligne: VIRTUAL TRAINING CENTER
8 mar. 2023 jusqu'au 9 mar. 2023
computer En ligne: VIRTUAL TRAINING CENTER
15 mai 2023 jusqu'au 16 mai 2023
computer En ligne: VIRTUAL TRAINING CENTER
17 juil. 2023 jusqu'au 18 juil. 2023
computer En ligne: VIRTUAL TRAINING CENTER
13 sept. 2023 jusqu'au 14 sept. 2023
computer En ligne: VIRTUAL TRAINING CENTER
11 déc. 2023 jusqu'au 12 déc. 2023

Description

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

Data Analysis is a process of applying statistical and mathematical techniques systematically to understand, explore, and analyze data to find patterns, and draw inferences that help businesses make data-driven decisions. This typically involves multiple activities such as data collection, exploration, cleaning, pre-processing, and organizing data. Many times, data analysis is an iterative ongoing process where the data is continuously collected and analyzed simultaneously. There are two primary methods for data analysis.

Qualitative techniques and quantitative techniques. Quantitative data analysis techniques involve working with quantitative/numerical data including statistics, pe…

Lisez la description complète ici

Foire aux questions (FAQ)

Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

Vous n'avez pas trouvé ce que vous cherchiez ? Voir aussi : Data Science, Data privacy, Data management, Big data et Python.

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

Data Analysis is a process of applying statistical and mathematical techniques systematically to understand, explore, and analyze data to find patterns, and draw inferences that help businesses make data-driven decisions. This typically involves multiple activities such as data collection, exploration, cleaning, pre-processing, and organizing data. Many times, data analysis is an iterative ongoing process where the data is continuously collected and analyzed simultaneously. There are two primary methods for data analysis.

Qualitative techniques and quantitative techniques. Quantitative data analysis techniques involve working with quantitative/numerical data including statistics, percentages, and calculations. These techniques also include working with algorithms, mathematical analysis tools, and software to manipulate data and uncover hidden business value. For example, quantitative data analysis used to assess market data helps a company decide a price for its new product.
Qualitative data analysis involves, working with non-numerical data i.e categorical variables. Qualitative data analysis is also used in many business processes, such as identifying themes and patterns, answering research questions, etc to improve a product.

This course provides an overview of data concepts and what data analysis is and then deep dives into the fundamentals of Data Analysis such as statistics and probability. This course also focuses on widely used data analysis methods such as regression along with detailed steps to perform the same.

*Must have Microsoft Excel in order to complete class activities.

OBJECTIVES

  • Data Analysis process, benefits and use cases
  • Basic of Probability and Statistics
  • Measure of data spread and distributions
  • Inferential Statistics and Hypothesis Testing
  • Applications of Statistics and Probability theory
  • Forecast trends using linear regression analysis

AUDIENCE

This data analysis course is perfect for anyone who needs an introduction to Data Analysis such as Business Analysts, Management, Engineers, Developers

CONTENT

  • 1. All about Data 
      
    Data in the real world
  • A brief on various formats and sources of data
  • 7 V's of Data
  • Structured vs Unstructured vs Semi-Structured data
  • Data processing types

Introduction to Data Analysis 

  • Need for Data Analysis
  • Applications and Use Cases of Data Analysis
  • Data Analysis Methodology
  • Types of variables
  • Numerical vs Categorial Variables

Descriptive Statistics 

  • Measures of Central Tendency
  • Measures of Dispersion
  • Data Skewness and Kurtosis
  • Understanding Outliers
  • Understanding missing values
  • Role of Descriptive Statistics in Data Analysis

Inferential Statistics 

  • Population and Sample
  • Statistics vs Parameters

Introduction to Probability 

  • Basics of Probability
  • Axioms of Probability
  • Conditional Probability and Bayes theorem
  • 2. Applications of Conditional Probability 
      
    Understanding Probability Distributions 
  • Discrete Probability Distributions
  • Continuous Probability Distributions
  • Performing Distributions in Excel
  • Why understanding Data Distributions is important for Data Analysis

Data Analysis Process 

  • Understanding Covariance and Correlation
  • Understanding univariate vs Bivariate vs Multi variate data analysis
  • Understanding Regression
  • Simple Linear Regression
  • Multiple Linear Regression
  • Exercise

Introduction to Predictive Analytics 

  • Exercise

Rester à jour sur les nouveaux avi

Pas encore d'avis.

Partagez vos avis

Avez-vous participé à cours? Partagez votre expérience et aider d'autres personnes à faire le bon choix. Pour vous remercier, nous donnerons 1,00 € à la fondation Stichting Edukans.

Il n'y a pour le moment aucune question fréquente sur ce produit. Si vous avez besoin d'aide ou une question, contactez notre équipe support.

Recevoir une brochure d'information (gratuit)

(optionnel)
(optionnel)
(optionnel)
(optionnel)
(optionnel)
(optionnel)

Vous avez des questions?

(optionnel)
Nous conservons vos données personnelles dans le but de vous accompagner par email ou téléphone.
Vous pouvez trouver plus d'informations sur : Politique de confidentialité.